

Welcome to django-webhook!

A plug-and-play Django app for sending outgoing webhooks on model changes.

Django has a built-in signal system which allows programmers to schedule functions to be executed on
model changes. django-webhook leverages the signal system together with Celery to send HTTP requests
when models change.

Suppose we have a User model:

class User(models.Model):
 name = models.CharField(max_length=50)
 age = models.PositiveIntegerField()

If a webhook is configured, any time the above model is created, updated or deleted django-webhook
will send an outgoing HTTP request to a third party:

POST HTTP/1.1
host: webhook.site
user-agent: python-urllib3/2.0.3
django-webhook-uuid: 5e2ee3ba-905e-4360-94bf-18ef21c0e844
django-webhook-signature-v1:
django-webhook-request-timestamp: 1697818014

{
 "topic": "users.User/create",
 "object": {
 "id": 3,
 "name": "Dani Doo",
 "age": 30
 },
 "object_type": "users.User",
 "webhook_uuid": "5e2ee3ba-905e-4360-94bf-18ef21c0e844"
}

🔥 Features

	Automatically sends webhooks on model changes

	Leverages Celery for processing

	Webhook authentication using HMAC

	Retries with exponential backoff

	Admin integration

	Audit log with past webhook events

	Protection from replay attacks

📜 Table of Contents

	Quickstart
	Requirements

	Installation

	Test outgoing webhooks

	Configuring Celery
	Using a dedicated worker

	Example integrations

Footnotes

Quickstart

Requirements

Django Webhook depends on Celery for background processing. Celery is the de-facto background
processing system for Django.

Django-Webhook sends each webhook within the context of a Celery task. This allows us to offload
webhook logic from Django and automatically retry failed requests.

To install Celery in your Django project see: https://docs.celeryq.dev/en/stable/django/first-steps-with-django.html

Make sure that your project has a Celery worker running. This component is in charge of sending
webhooks.

Installation

To demonstrate and example the below code assumes we have a model called Product in an application called Core.

You don’t have to include the code sample, any of your own models could work.

from django.db import models

class Product(models.Model):
 name = models.CharField(max_length=50)

Install the python package

pip install django-webhook

Add the app to your settings.py and whitelist models for which you want to send webhooks

INSTALLED_APPS = [
 "django_webhook"
]

Whitelist models for which we send webhooks
DJANGO_WEBHOOK = dict(MODELS=["core.Product", "users.User"])

Run the migrations

./manage.py migrate

Test outgoing webhooks

Visit https://webhook.site to create an inbox for your webhooks. Copy the unique URL which will be
the destination for our webhook.

[image: webhook-site]

Configure an outgoing webhook for one of your models

./manage.py shell

>>> from django_webhook.models import Webhook, WebhookTopic
>>> webhook = Webhook(url="https://webhook.site/13aa5040-3ae8-41f9-b481-6bee72ec3d6d")
>>> webhook.save()

Set the topic to be triggered on create and update for your model.

>>> topics = [
 WebhookTopic.objects.get(name="core.Product/create"),
 WebhookTopic.objects.get(name="core.Product/update")
]
>>> webhook.topics.set(topics)

Finally create a new Product instance to trigger the webhook.

>>> from core.models import Product
>>> Product.objects.create(name="test")

django-webhook should send an outgoing HTTP request in the following format:

POST HTTP/1.1
host: webhook.site
user-agent: python-urllib3/2.0.3
django-webhook-uuid: 5e2ee3ba-905e-4360-94bf-18ef21c0e844
django-webhook-signature-v1:
django-webhook-request-timestamp: 1697818014

{
 "topic": "core.Product/create",
 "object": {
 "id": 3,
 "name": "test",
 },
 "object_type": "core.Product",
 "webhook_uuid": "5e2ee3ba-905e-4360-94bf-18ef21c0e844"
}

Visit the page[#1] for your unique webhook where you can inspect the incoming HTTP request.

[image: incoming-webhook-example]

Footnotes

[#1]
https://webhook.site

Configuring Celery

Celery[#1] is an open-source asynchronous task queue. It’s a popular
choice for processing tasks in the background in Django projects.

Django-Webhook uses Celery to offload the work of sending HTTP requests to a separate worker
process. This ensures that we don’t bog down the web workers and that we can retry failing webhooks.

Running a Celery worker is a requirement for running Django-Webhook. Without a Celery worker no
webhooks will be sent.

By default Django-Webhook places tasks on the default Celery queue, called “celery”. To consume
tasks run a worker:

celery -A config.settings.celery:app worker -Q celery

Using a dedicated worker

If you want to process Django-Webhook tasks separately from your other tasks you need to use task
routing[#2], a separate queue and start a separate worker. This could be to:

	process webhook tasks faster by running multiple workers for the webhooks queue

	avoid clogging up the default tasks queue with webhook tasks

	rate limit how many webhooks to send per minute

In your Celery configuration file configure the task_routes property:

import os

from celery import Celery

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.production")

app = Celery("myapp")
app.config_from_object("django.conf:settings", namespace="CELERY")

Configure task routes
app.conf.task_routes = [
 [
 ("django_webhook.tasks.fire_webhook", {"queue": "webhooks"}),
],
]

With this route enabled webhook tasks will be routed to the “webhooks” queue, while all other tasks
will be routed to the default queue (named “celery”). You now have to run a worker that consumes
from the webhooks queue:

celery -A config.settings.celery:app worker -Q webhooks

The worker could also consume from multiple queues:

celery -A config.settings.celery:app worker -Q celery,webhooks,email

Footnotes

[#1]
https://github.com/celery/celery

[#2]
https://docs.celeryq.dev/en/stable/userguide/routing.html#routing-tasks

Example integrations

	Flask server integration[#1]

	Express.js server integration[#2]

Footnotes

[#1]
https://github.com/danihodovic/django-webhook/tree/master/examples/flask

[#2]
https://github.com/danihodovic/django-webhook/tree/master/examples/nodejs

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-webhook!

 		
 Quickstart

 		
 Requirements

 		
 Installation

 		
 Test outgoing webhooks

 		
 Configuring Celery

 		
 Using a dedicated worker

 		
 Example integrations

_static/minus.png

_static/plus.png

_images/webhook-site-incoming-webhook.png
Password ‘ Alias ‘ Schedule ‘ CSV Export \ B Custom Actions Settings... Run Now \ M XHR Redirect Settings... Redirect Now ‘ M CORS Headers ‘ W Auto Navigate ‘ M Hide Details | More v

REQUESTS (1/500)
Search Query

Newest First

(-]

Request Details Permalink Raw content Copy as + Headers
(posT) https://webhook site/13aa5040-3ae8-4119-b481-6bee72ec3d6d connection close
Host 181.2.101.136 Whois Shodan Netify Censys content-length 161
Date 10/19/2023 3:58:59 PM (6 minutes ago) django-webhook-utid Se2ee3ba-905e-4360-94bf-18eF2
size 161 bytes django-webhook-
D a68ccd40-96ba-4aBa-a891-7e68ec331524 signature-vi
django-webhook- 1697741938
Files request-timestamp
content-type application/json
user-agent python-urllib3/2.0.3
accept-encoding identity
host webhook.site
Query strings Form values
(empty) (empty)

Raw Content

{
"topic": "tests.User/create",
"object": {
"id
""name’
"email
H

"object_type"
"webhook_uuid!

"tests.User",
"5e2ee3ba-905e-4360-94bf-18ef21c0e844"

_images/webhook-site.png
Docs & APl Custom Actions ~ WebhookScript ~ Terms & Privacy ~ Support i Copy ~

edule ‘ CSV Export ‘ B Custom Actions Settings... Run Now ‘ B XHR Redirect Settings... Redirect Now \ [M CORS Headers \ M Auto Navigate \ W Hide De

First Webhook:site lets you easily inspect, test and create advanced scripts and workflows for any incoming HTTP request or e-mail. What's &

(-]

— Any requests or emails sent to these addresses will be logged here instantly — you don't even have to refresh!

Your unique URL
https://webhook.site/13aa5040-3ae8-4119-b481-6bee72ec3d6d & Copy (FOpeninnewtab (4 Examples

Your unique email address

13aa5040-3ae8-41f9-b481-6bee72ec3d6d@email .webhook.site & Copy Sendmal

To change the response (status code, body content) of the URL, click Edit above.

With Webhook.site Pro, you get more features like Custom Actions that lets you extract JSON or Regex values and use them to send pus
request to another URL, send data to Google Sheets, Dropbox, databases like MySQL, PostgreSQL and write custom scripts using Webh

Star on GitHub

_static/file.png

